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Abstract

As on land, oceans exhibit high temporal and spatial temperature variation. This “ocean weather” contributes to the physiological and
ecological processes that ultimately determine the patterns of species distribution and abundance, yet is often unrecognized,
especially in tropical oceans. Here, we tested the paradigm of temperature stability in shallow waters (<12.5 m) across different zones
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of latitude. We collated hundreds of in situ, high temporal-frequency ocean temperature time series globally to produce an intuitive
measure of temperature variability, ranging in scale from quarter-diurnal to annual time spans. To estimate organismal sensitivity of
ectotherms (i.e. microbes, algae, and animals whose body temperatures depend upon ocean temperature), we computed the
corresponding range of biological rates (such as metabolic rate or photosynthesis) for each time span, assuming an exponential
relationship. We found that subtropical regions had the broadest temperature ranges at time spans equal to or shorter than a month,
while temperate and tropical systems both exhibited narrow (i.e. stable) short-term temperature range estimates. However,
temperature-dependent biological rates in tropical regions displayed greater ranges than in temperate systems. Hence, our results
suggest that tropical ectotherms may be relatively more sensitive to short-term thermal variability. We also highlight previously
unexplained macroecological patterns that may be underpinned by short-term temperature variability.

Keywords: in situ, ocean temperature, high frequency, biological rate, climate variability hypothesis

Significance Statement

We collated hundreds of temperature time series from around the world’s oceans recorded at a frequency of 1 hour or less. Using
these data, we tested for patterns in temperature variability across climate regions. Contrary to the climate variability hypothesis,
which states that the temperature variability is highest in temperate regions and lowest in tropical ones, our results show that, in
the short term, subtropical regions tend to be most variable. To investigate the biological significance of this pattern, we converted
our measure of temperature variability into the equivalent span of biological rates that would be experienced by an ectothermic or-
ganism at equilibrium with its environment. Our findings could help to explain ecological patterns that were previously unexplained.

Introduction

Recording ocean temperature over large spatial scales
(e.g. 1,000 s km) and continuously through time at scales relevant
to the body temperatures of microbes, algae, and other marine
animals has historically been challenging simply because the
ocean is so vast (1). Since the 1980s, it has become more feasible
to measure the global ocean temperature at the sea surface using
infrared sensors aboard satellites (2). As a result, sea surface tem-
perature (SST) has been used in many studies as a proxy for in situ
temperature in the oceans [e.g. (3)]. Yet, SST data are often aver-
aged over large spatial (e.g. from multiple km? up to 1-by-1 degree
grids) and temporal (e.g. daily data for once-per-day satellite
passes) scales, which can mask finer-scale variability that could
otherwise be captured using high frequency in situ temperature
loggers (4). For instance, satellite-derived time series, aggregating
temperature data at much coarser spatial scales, are frequently
and typically employed to calibrate Earth System Model projec-
tions (5). The latter are then used to drive ecological niche models
that are often used to forecast climate-driven changes in species
distributions (6). While the remotely sensed data used at the basis
of these applications are typically calibrated using fine-scale in situ
data [e.g. (7)], because these remotely sensed estimates of SST have
a much coarser resolution, the finer-scale variability experienced
by individual organisms is not captured in those estimations.

In the oceans, fine-scale temperature variability can arise due
to oceanographic processes, such as upwelling, tides, and eddies,
and is known to drive many ecological patterns (8-12) including
mass mortality events during and following marine heatwaves
and cold-spells (13-15) as well as the persistence and movements
of organisms (16, 17). When local conditions exceed organismal
thresholds, biodiversity losses can be dire (18, 19). Ultimately,
records that include local-scale temperature variability may be
critical to improving understanding of processes that drive the
physiological performance, reproduction and survival of
organisms, and the dynamics of populations and assemblages
(4, 18, 19). However, while in situ records of high spatial- and
temporal-frequency ocean temperature data are widespread,
their integrated use at macroecological scales is comparatively
rare and has not yet been examined for ocean-wide comparisons
across regions.

Here, we investigated the “tropical temperature stability para-
digm” (20, 21) at short timescales by testing whether shallow
(<12.5 m) tropical ocean temperatures are more stable in com-
parison with locations from higher latitudes at time spans of
less than a year. To do so, we first assembled 492 in situ ocean
temperature time series measured at high temporal resolutions
for tropical, subtropical, and temperate locations across a wide
range of latitude (Fig. 1). We then used these records to quantify
temperature variability at different temporal windows (quarter-
diurnal, semi-diurnal, diurnal, weekly, bi-weekly, monthly, and
annual) based on common astronomical cycles and biorhythms
by calculating the range of temperatures (difference between
the minimum and maximum) for each temporal window.

Most marine species are ectotherms (22) whose biological proc-
esses are dependent on temperature (e.g. metabolic rate and
photosynthesis). Thus, temperature variability presumably plays
an important role across all levels of biological organization. To
examine the potential biological impact of the measured tem-
perature variability, we also modeled biological processes that
track temperature using metabolic rate as an example. More spe-
cifically, we used a biological rate equation that assumes an expo-
nential relationship with temperature (23, 24) within the rise
portion of the thermal performance curve. Our approach moves
beyond more typical efforts that assess the relative sensitivity of
species living at the edge of their thermal safety margins (TSMs)
[e.g. (25)] or when rates (e.g. photosynthesis) saturate and ultim-
ately fall due to limiting factors such as light, nutrient, and carbon
availability (26). Thus, our results apply only to the rise compo-
nent of temperature-dependent biological processes and consider
sensitivity to temperature variability within this specific range.

Results
Ocean temperature variability

The paradigm that the ocean temperature is most stable in the
tropics was found to be true only at coarse temporal scales, i.e. an-
nually. Indeed, our results revealed annual patterns of tempera-
ture variability in line with the tropical temperature stability
paradigm, whereby both the median and 90th percentile of the
temperature range for annual temporal windows (Figs. 2g and
3g) were highest in temperate systems and most stable in the
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Fig. 1. Distribution of the 492 high frequency temperature time series used in this study. 169 time series are from tropical regions, 179 from subtropical,
and 144 from temperate regions. Insets a)-f) correspond to the temperature time series at the locations shown by the respective letters. These sample
time series help to visualize the higher temporal variability of certain locations at the shorter temporal windows. For instance, insets a) and f) both show
very high temperature variability [a) tropical Ecuador (2.72°C diurnal median, 7.70°C monthly median) and f) temperate Chile (1.58°C diurnal median,
6.17°C monthly median)], even though inset a) is from tropical regions. The numbers between brackets in the title of each inset indicate the latitude and
the measurement frequency of the respective time series. The median temperature ranges over the diurnal and monthly temporal windows are also
shown for each inset. The y-axes of all six insets have the same range, for comparability. Additional examples of these time series are shown in SI

Appendix, Figs. S6 to S8.

tropics. The annual subtropical signal was intermediate between
the temperature ranges in tropical and temperate regions.
However, our results for the short-term temperature variability
showed a different trend across latitude which contradicts the
“tropical temperature stability paradigm.” We found that the tem-
perature rangesin the shorter temporal windows (quarter-diurnal
to monthly) observed in the tropics could exceed those of temper-
ate systems and did not support a paradigm of relative tempera-
ture stability in the tropics, at least at short time spans (see
examples in Fig. 1). The median temperature range in the tropics
was higher than that of temperate systems for the quarter-
diurnal, semi-diurnal, and diurnal time spans (apparent in the
generalized additive mixed-effects models (GAMM) and supported
by Bayesian models, albeit weakly—see SI Appendix, Fig. S10) but
was similar to that of temperate regions for the weekly and bi-
weekly time spans (red versus blue boxes: Figs. 2a to 2e). The ex-
treme (90th percentile) temperature ranges between tropical
and temperate systems were also similar at quarter-diurnal,
semi-diurnal, and diurnal time spans, whereby temperate sys-
tems only showed markedly higher extreme temperature ranges
at longer time spans of weeks and above (red versus blue boxes:

Figs. 3a to 3f). Our sensitivity analyses also supported similar
trends (see SI Appendix, Figs. S1, S2, S3, and S5).

In general, the median temperature ranges in subtropical sys-
tems were highest at all short timescales as visualized by
smoothed plots of the summed effects of GAMM across latitude
(Fig. 2a to f). However, these reported trends for the monthly tem-
poral window were not supported by the Bayesian mixed-effects
model which included climate classification as a factor (as indi-
cated by the absence of asterisks). Despite this, these trends
were present in all our sensitivity tests (see SI Appendix, Figs.
S1, S2, S3, and S5). The extreme (90th percentile) temperature
range observations were also highest in subtropical regions at
all short timescales, but temperate and subtropical regions
became increasingly more similar as the time span increased
from quarter-diurnal to monthly (yellow boxes: Fig. 3a to f).
Moreover, when compared with the median temperature ranges
(Fig. 2a to ), none of the Bayesian models for the extreme tempera-
ture ranges at short timescales showed strong evidence that the
temperature variability in subtropical regions was highest (Fig. 3a
to f), although the GAMM did show that these trends were still pre-
sent. Here again, our sensitivity tests corroborated these patterns,
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Fig. 2. Median of the temperature range over seven different temporal windows as a function of the absolute latitude. The median temperature range for
seven temporal windows: quarter-diurnal (a, n=3,063), semi-diurnal (b, n=3,066), diurnal (c, n =3,035), weekly (d, n=3,034), bi-weekly (e, n=3,038),
monthly (f, n=3,035), and annual (g, n=479). Dots represent the computed median temperature ranges over their respective temporal windows and are
colored according to three climate classifications. The trends across absolute latitude are visualized using GAMM, as represented by the black lines, with
the gray shadings representing the 95% ClIs. Asterisks indicate that the Bayesian models showed strong evidence (i.e. the 0.95 credible intervals do not
include zero) that tropical and/or subtropical regions differed from temperate regions. In both the GAMM and Bayesian models, “plot_id” was nested
within “spatial_blocks” for all temporal windows (a-f) except for the annual time span whereby “spatial_blocks” was the only random effect specified (g)
(see Materials and methods for more details). The boxplots show the medians (thick central lines) and the quartiles of the data binned under each climate
region. Note that the y-axes of the boxes have different ranges. Sensitivity tests were performed to ensure that the results are robust (see SI Appendix,
Figs. S1 to S3 and S5).
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quartiles of the data binned under each climate region. Note that the y-axes of the boxes have different ranges. Sensitivity tests were performed to ensure

that the results are robust (see SI Appendix, Figs. S1 to S5).

with the exception that the variability in temperate regions over-
took that of subtropical regions for the monthly temporal window
in some cases (see SI Appendix, Figs. S1, S2, and S3).

Range of biological rates

We further found that converting these temperature ranges to the
ranges of biological rates (i.e. the difference in R,e# when Tis sub-
stituted with the highest and lowest temperatures; see Materials
and methods), led to different interpretations of “stability” across
temperate, subtropical, and tropical regions. The range in
temperature-dependent biological rates for temperate systems
was consistently lower than that for both tropical and subtropical
systems at both short and long time spans (Figs. 4 and 5), being
typically highest for tropical systems. Although these reported
trends are consistent in all our sensitivity tests for the median dif-
ference in biological rates, the trends are less consistent for the
extreme difference in biological rates (see Fig. 5 and SI
Appendix, Figs. S2, S3, and S4), but these small discrepancies do
not affect the main patterns detected or our conclusions.

Potential limitations

Our results certainly could have been affected by sampling bias,
forinstance, because many studies in the tropics aim to investigate
internal waves [e.g. (27-29)] and thus select locations for deploying
in situ temperature loggers that are inherently variable. However,
our results are still likely robust because the 169 temperature time
series from tropical regions used in this study come from a wide
range of sources (see SI Appendix, Table S29), each with different
goals. More specifically, the databases that contributed 61.5% of
the time series in tropical regions [Australian Institute for Marine
Science (AIMS): 66 time series, and Pacific Marine Environmental

Laboratory (PMEL): 38 time series] are underpinned by more gener-
ic ocean monitoring objectives.

Our results could also have been affected by measurement un-
certainties of the temperature sensors. Indeed, a low accuracy
and/or resolution of the sensors relative to the temperature vari-
ability quantified in this study would result in a large uncertainty
of the temperature variability. Here, we compiled in situ tempera-
ture data globally that were recorded with an array of different
sensors having different accuracies and resolutions (see SI
Appendix, Table S30). The sensor accuracies ranged from 0.002
to 0.8°C, while the resolutions ranged from 0.0001 to 0.14°C.
While it is possible that the data recorded using the sensor with
the lowest accuracy (Sensus Ultra loggers: 0.8°C) could have
affected our results, since this accuracy is comparable to the tem-
perature variability for the shorter temporal windows (quarter-
diurnal, semi-diurnal, and diurnal—see Fig. 2), it is unlikely that
these data had much effect on our overall results, because the
median and the 90th percentile of the temperature range esti-
mates are computed over a larger number of replicates for the
shorter temporal windows, thus canceling out the measurement
uncertainties to some degree (see Materials and methods—
Temperature range quantification). For instance, if the median
is computed from 365 temperature range values for the diurnal
temporal window over a year, it would be computed from 730
temperature range estimates for the semi-diurnal window and
1,460 estimates for the quarter-diurnal window. Thus, despite
the higher potential for the measurement uncertainty of the log-
gers to affect the median and 90th percentile of the temperature
range estimates when the temporal window is shorter, this issue
is offset by the larger number of sample values that are obtained
in a shorter temporal window. In addition, <25% of the tempera-
ture time series were recorded using the Sensus Ultra loggers
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robust (see SI Appendix, Figs. S1 to S5).

(109 out of 492—see SI Appendix, Table 530). This numberis alsoa
conservative value, since the lower(st) accuracy and precision val-
ues are recorded in Table S30 in the cases where several sensors
were used (see SI Appendix, Table S30). In addition to measure-
ment uncertainties of the temperature loggers, one data provider
(COSYNA) has also reported site- and seasonal-dependent effects
(biofouling near the coast from spring to early autumn) that could
have affected the data accuracy beyond the instruments’ factory
specifications. However, sensor drifts of only up to 0.03°C were ob-
served in this case (see SI Appendix, Table S30), which is much
smaller than our reported temperature variability, even for the
shortest temporal window.

Finally, there are some uncertainties regarding the computa-
tion of the biological rates, in particular with the E (i.e. activation
energy) values used. Here, we used E values of 0.630 and 0.433 eV
to represent the span of average activation energies of metabolic
reactions for different animal divisions and for fish only, respect-
ively (see Materials and methods for more information). Our sen-
sitivity tests show that if the E values are similar across ecoregions
for the same organism, then our patterns for the biological rates
are mostly robust to different E values (see SI Appendix, Fig. S4).
It is currently unclear whether E values vary with ecoregion for
the same animal group. Thus, investigating whether E values
vary in different ecoregions is an important future research
avenue.

Discussion

Long-held assumptions about the relationship between environ-
mental temperature variability and patterns in a species’

physiological sensitivity underpin predictions of vulnerability to
future change. For instance, the “tropical temperature stability
paradigm” states that the shallow ocean temperature in tropical
regions is less variable than that at higher latitudes, both within
and across years, and over evolutionary timescales, due to climate
stability in tropical regions (20, 21). Hence, tropical species are
typically considered “thermal specialists” because their tempera-
ture regime is not generally expected to select for physiological
flexibility (30). Tropical species also often live closer to their ther-
mal limits with a narrow thermal safety compared to those from
colder regions (30). Thus, the assumptions of greater historical en-
vironmental stability and the higher likelihood of exceeding tem-
perature thresholds in tropical regions mean that tropical
ectotherms are particularly sensitive not only to long-term ocean
warming (30) but also to temperature variability signals, such as
heatwaves (31, 32). Our results show that tropical regions typically
exhibit lower seasonal variation in oceanic temperature and are
more stable than temperate regions at annual time spans and
stronger finer-scale temperature variation in tropical oceans is
prevalent. Indeed, at the quarter-diurnal, semi-diurnal, and diur-
nal temporal windows, temperature fluctuations in tropical and
temperate regions were roughly similar (and surprisingly can
even be greater in some tropical regions). Moreover, subtropical
systems were more variable than both temperate and tropical sys-
tems at all short timescales, a result that was unexpected. Our
analyses were performed for shallow depths because the large-
scale availability of in situ temperature data near the ocean’s sur-
face enables us to systematically test differences in temperature
variability across ecoregions. Future research can look into global
ocean temperature variation at greater depths when more data
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become available and test whether the same conclusions can be
reached.

Here, we also investigated the potential biological effects of ob-
served temperature variability by translating it to its correspond-
ing biological rate to model biological processes, such as
metabolic rate. The body temperature of ectotherms dictates
temperature-dependent biological rates (23, 33) that respond
through thermodynamic effects on enzyme kinetics (8, 34). In gen-
eral, biological rates increase exponentially with environmental
temperature below the point of physiological collapse (i.e. the op-
timal temperature, Tpy) of the thermal performance curve (33).
This happens as a result of faster cell kinetics leading to increased
ATP demand and greater protein turnover (35), or as a result of
higher oxygen demand to support higher metabolic rates includ-
ing activity. Because of the exponential nature of the curve’s rise
component, a one-degree temperature increase in the tropics
(e.g. from 24 to 25°C) will lead to greater changes in any
temperature-dependent biological rates compared to a one-
degree rise in colder regions (33) (e.g. from 9 to 10°C). Contrary
to many studies that have focused on the consequences of the
temperatures exceeding the TSMs of species in the tropics (tem-
peratures that lead to a fall in biological rates), here, we focus
on the realized response of a temperature-dependent rate change
within the range of optimal environmental temperatures (i.e. over
the rise component of the thermal performance curve) for a the-
oretical organism. Indeed, many other factors can affect the bio-
logical processes of marine species across latitude, such as solar
radiation (36), nutrient supply (37), and water column mixing/
stratification (37), and we hope to inspire future studies aiming
to test how additional processes interplay with temperature vari-
ability to constrain biological patterns.

When the observed ocean temperature ranges were converted
to the equivalent span of biological rates to model the rise portion
of the thermal performance curve, the median span of biological
rates was higher at all timescales in both the tropics and subtrop-
ics compared to that of temperate regions. Since the biological
rates of ectotherms increase exponentially with temperature, ec-
totherms living in tropical and subtropical systems (i.e. at higher
temperatures) may experience greater realized biological rate
variability in comparison with those from temperate regions.
This presumably comes with energy and efficiency consequences
(38). In other words, the cost of living in warmer waters would pre-
sumably be relatively high (39) if short-term physiological accli-
mation needs to adjust reaction rates to track temperature
change, even if the temperature variability in these warm waters
is similar or lower than what is found in cooler locations. Our re-
sults therefore implicate the role of temperature fluctuations that
fall within the TSMs as an additional “cost” for tropical species
(40), which may ultimately explain why marine ectotherms
from tropical regions tend to have a narrower TSM (23, 25).

Overall, detecting high frequency temperature signals across
the shallow ocean begs the question of whether short-term in
situ ocean temperature variability is important to species’ re-
sponses to warmer temperatures under climate change (17). In
fact, three previously unexplained patterns from recent macro-
ecological studies may be related to these short-term ocean tem-
perature variability signals. First, “tropical” fish species have
higher thermal tolerances (upper critical thermal maximum
based on laboratory experiments) than “temperate” ones when
acclimated at similar temperatures (41). This pattern does not
contradict the fact that fish species in the tropics or at the warm
range edges are most vulnerable to warming (42, 43).
Ectotherms in warmer waters are still most sensitive to a rise in

temperature not only because they have a narrower TSM (23,
25) but also because they are living closer to their upper thermal
limits (17, 30). This study only shows that “tropical” fish species
are relatively more thermally tolerant compared to their “temper-
ate” counterparts when both are at the same acclimation temper-
atures. Our results may explain why this happens: Tropical
species in shallow waters (<12.5 m) may be exposed to tempera-
ture variations that drive relatively larger ranges in biological
rates in comparison with temperate species, which may ultimate-
ly increase selection of relatively high thermal tolerance in “trop-
ical” fish species. Second, it was found that rocky and coral reef
fishes generally fall into two thermal guilds, representing either
warm (tropical) or cool (temperate) regions (44), such that fish spe-
cies found exclusively at subtropical latitudes are rare. While
sampling bias was initially implicated in this pattern (44), ongoing
and systematic surveys have failed to reveal an exclusive subtrop-
ical shallow reef fish fauna, since this pattern was first noticed in
2017. Moreover, species richness trends from the equator pole-
wards across the northern and southern hemisphere are bimodal
and peak where tropical and temperate species overlap in occur-
rence (45-47). Our results thus suggest that an important direc-
tion for future research is to investigate the role of high
temperature variability at short timescales in the subtropics as
an alternative explanation for these macroecological patterns.
Third, our findings can also explain why many marine teleosts
do not conform to Rapoport’s rule (48), which posits that species
living at higher latitudes have a greater latitudinal range than
those living at lower latitudes. An underlying assumption of
Rapoport’s rule is that more stable temperatures in the tropics
translate to greater sensitivity to temperature variation, resulting
in a latitudinal range that is narrower. However, this “rule” may
not manifest in nature, especially across depths in the upper
mixed layer of the ocean where most tropical reef species have
been studied; indeed, we show that tropical systems can be as
variable as temperate systems at short timescales.

Our work thus emphasizes the importance of considering the
“ocean weather” in ecological research, which is missed by satel-
lite SST data because of their coarse temporal resolutions. A num-
ber of studies from subtropical to tropical locations in Florida, the
Caribbean, and eastern and central Pacific have noted that the
interaction of thermal stratification in the water column with bot-
tom topography leads to temperature variability at scales of mi-
nutes to hours that is equivalent in magnitude to variability
across seasons (27-29, 32). Another study carried out near
Moorea, in French Polynesia, using very high frequency (2 mi-
nutes) in situ temperature data reported that the temperature
at different depths can vary greatly due to eddy-induced internal
waves that can either increase or decrease the occurrence of mar-
ine heatwaves (49). The observed temperature variability in this
system was a determining factor in whether the corals at shallow
sites bleached or not. Indeed, eddies can have very different dy-
namics in different regions of the world (50), highlighting the im-
portance of considering local oceanographic and geological
factors which can buffer or propagate temperature variability.
Besides the limitations posed by the coarse temporal resolution
of satellite data for ecological research, another way in which
SST data can miss the “ocean weather” conditions arises due to
the fact that they only measure ocean temperatures at the sur-
face, thereby overlooking ecologically important subsurface
events (51).

Here, we find that short-term changes in “ocean weather” have
great potential to impact organisms living in shallow depths
across oceanic regions, including the tropics. Larger than
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Table 1. Information pertaining to the sample time series in Fig. 1.

Inset  Latitude Longitude Depth Logger used Accuracy of Precision of
) ) (m) sensor (°C) sensor (°C)

a -0.87 —82.58 8 HOBO v2 Water Temp Pro sensor, Onset 0.21 0.02

b -12 55 1 Standard ATLAS SST sensor using YSI (Yellow Springs Instruments) 0.03 0.001

thermistor 46006

c -27.94 —48.55 12 HOBO Pendant Temperature Data Logger UA-002 0.53 0.14

d —20.90 115.46 4.9 Sensus Ultra loggers (produced by ReefNet Inc., Canada) 0.8 0.01

e —42.12 148.09 8.3 HOBO v2 Water Temp Pro sensor, Onset 0.21 0.02

f —41.50 -72.31 1.5 Information on loggers could not be obtained No info No info

expected temperature variation experienced by organisms at
short timescales in tropical and subtropical oceans, and corres-
pondingly high variation in temperature-dependent biological
rates, may constrain organisms’ performance. Indeed, tropical
and subtropical species may be even more sensitive to the
changes in temperature in their respective regions compared to
temperate species if short-term temperature variation has ener-
getic and physiological consequences. Long-held assumptions
about how patterns of environmental variability drive patterns
in physiological sensitivity and vulnerability to future ocean cli-
mate change may require rethinking.

Materials and methods

Data collection

We began assembling the database in June 2020. Data were gath-
ered from a variety of sources including: personal networking,
broadcasted data requests on Twitter (now known as X), and
from online data portals that provide public data access [e.g.
ONC (https://www.oceannetworks.ca/), BODC (https:/www.
bodc.ac.uk/), and IMAS (https:/data.imas.utas.edu.au/)]. The
data were stored in a MySQL database, which allowed easier
transfer of data to R 4.0.2 (52) for analysis through an R package
called RMySQL, v0.10.23 (53). Sample time series are shown in
Fig. 1, with information pertaining to these time series provided
in Table 1.

Quality control

Data from instruments deployed on gliders or water column pro-
filers were not included as we only aimed for fixed station deploy-
ments. To ensure that only subtidal samples were analyzed, we
excluded time series that contained aerial exposure during low
tides. This was determined through direct communication with
the data providers, who flagged data that were exposed to air dur-
ing low tides. Data that contained irregular frequencies, such as
expected following equipment failure, were either corrected ac-
cordingly (filled with “NA” values) or discarded. Time series were
subjected to a further quality control process including: removal
of duplicated measurements and data anomalies assumed to be
artifacts (such as unusually extreme temperatures).

Filtering

We only used time series with measurement frequencies of 1 hour
or less that spanned at least half a year in duration. The longest
time series had a duration of 29 years. We also filtered the data ac-
cording to depth, which ranged from the sea surface to depths
shallower than 12.5 m. Initially, we aimed for depths shallower
than 10 m, but because depth estimates can vary due to tidal
height, we opted for depths shallower than 12.5 m to include
data that are essentially at 10 m depth but are listed at slightly

deeper depths due to the effect of tides. The resulting dataset
comprised 492 time series, containing 68,110,162 temperature
measurements, spread across 429 locations with unique coordi-
nates (i.e. since some locations extended to several depths) and
spanning between —53° and 55° of latitude (Fig. 1). The climate
classifications of these 492 time series were as follows: 169 tropic-
al, 179 subtropical, and 144 temperate.

Climate classification

We assigned each time series into one of these three climate re-
gions: “tropical” representing latitudes <20°, “subtropical” distin-
guishing as >20° and <35°, and “temperate” representing >35°
and <55°. We recognized that latitude alone cannot be used to de-
marcate between the different climate classifications (54).
However, since the goal of this study was to test the “tropical tem-
perature stability paradigm,” we followed protocols of previous
studies where “tropical” was classified according to a latitudinal
threshold alone [e.g. (41, 55, 56)], and we selected a conservative
threshold which was consistent with as many studies as possible.
We further distinguished “subtropical” systems because the sea-
sonal variability in the subtropics was expected to be less than
that at higher latitudes, but greater than that at lower latitudes

[e.g. (20)].

Temperature range quantification

To test for differences in temperature variability between ocean
regions, we first standardized our data to quarter-diurnal, semi-
diurnal, diurnal, weekly, bi-weekly, monthly, and annual win-
dows. These temporal windows represent different astronomical
cycles (e.g. diurnal and lunar) that could affect or are known to af-
fect the ocean’s temperature. For instance, the lunar cycle affects
ocean currents, which in turn can change the heat content at a
particular pointin the ocean (57). The selected temporal windows
also span common biological rhythms (e.g. circadian and annual)
of marine species (58, 59), allowing us to assess the effect of tem-
perature variability on biological rates in these different time
spans. For each temperature time series, we then calculated the
total temperature range for each temporal window by subtracting
the lowest value from the highest value recorded. For example,
the diurnal range for a time series with a 30-minute sampling fre-
quency would be calculated as the maximum minus the min-
imum temperature returned from 48 measurements. Thus, each
time series returned multiple temperature range estimates. For
instance, a time series that spanned 1 year in duration would con-
tain 365 or 366 temperature range estimates for the diurnal tem-
poral window. For all temporal windows, with the exception of the
“Annual” one, we further subdivided time series that were longer
than 1year into 1-year subsamples, to standardize our time series
that had vastly different durations (from half a year to 29 years).
This step was not done for the “Annual” temporal window because
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the median and 90th percentile have to be calculated from at least
three temperature range estimates, making it impossible to sub-
divide the time series in this case. For each of these subsamples,
we then computed the median temperature range to estimate
the central tendency and the 90th percentile to represent the ex-
treme temperature range, repeating the same procedure for each
temporal window. There were more locations being represented
for the shorter temporal windows (quarter-diurnal to monthly)
than there were for the “Annual” temporal window, because the
durations of some time series were <3 years and these could
therefore not be included for the calculation of the temperature
range in the “Annual” window.

Sensitivity tests

There were significant parts of some time series that contained
missing values. To test whether the results were robust to these
issues, we performed three sensitivity tests. First, we checked
whether missing values could have been an issue (SI Appendix,
Fig. S1), because calculation of the median and 90th percentile
over a temporal window that has too little information can bias
the results. We used a stricter threshold for the longer temporal
windows (weekly to annual; see legend in SI Appendix, Fig. S1)
since these contain less temperature range estimates per sub-
sample (e.g. a 1-year subsample would contain 365 or 366 tem-
perature range estimates for the diurnal temporal window and
around 52 estimates for the weekly window), meaning that miss-
ing values have more potential to bias the median and 90th per-
centile because of less estimates. Second, we filtered out time
series that were <3 years in duration (SI Appendix, Fig. S2). This
implies that all the temporal windows, from quarter-diurnal to
annual, had exactly the same samples of time series between
them, because, for the “Annual” window, it was not possible to
compute the median and 90th percentile for the time series that
were <3 years in duration. We acknowledge that even three values
might not be enough to compute the median and 90th percentile.
However, in all three sensitivity tests, the trends for the annual
windows were consistent; this is especially the case for the tem-
perature range, where all the trends are similar and agree with
the temperature stability paradigm in the tropics. The third sensi-
tivity test combined the criteria of both the first and second tests
(SI Appendix, Fig. S3). We also performed two additional sensitiv-
ity analyses to test whether our results are robust to: (i) different E
values (see Materials and methods—Biological rate quantification
for more details) and (ii) the removal of temperature data recorded
in the open ocean (SI Appendix, Fig. S5). The latter sensitivity test
was performed because the physical processes in the open ocean
and on the continental shelf can be different (60). There were
more in situ loggers in the open ocean in tropical regions com-
pared to subtropical and temperate regions (Fig. 1), which could
have biased our results. GEBCO bathymetry data (61) were used
to obtain depth estimates of the ocean floor close to our loggers,
and loggers that were located close to grid points where the ocean
floor was deeper than 200 m were classified as “open ocean.”

Biological rate quantification

We estimated biological rates on the rise component of the ther-
mal performance curve based on the exponential relationship
with temperature according to the equation:

Biological rate = Rye™#

where Eis the activation energy (eV), kis the Boltzmann'’s constant
(8.617 x 10™° eV K71), T is the absolute temperature in kelvin, and

Rois an organism- and state-dependent scaling coefficient (62, 63).

We selected an E value of 0.63 eV that represents an average
value for different organisms, from small aerobic microbes to lar-
ger animals like fishes and reptiles (24, 34). An R, value of ¢'%-3#
was used as a typical value for fish (23). Because E can vary across
species (23, 24), we performed another sensitivity analysis where-
by we used an E value of 0.433 eV—a typical E value for fish (23)—
to test the robustness of our results (see SI Appendix, Fig. S4). In
practice, both E and Ry would be changed depending on the spe-
cies (23). However, because the objective of this paper was to
test the effect of temperature variability alone on biological rates,
we kept Ry constant for simplicity. In other words, changing Ro
would simply rescale the rest of the equation, making it useful
only if we were interested in linking our estimates of biological
rates to empirical data versus quantifying temperature-
dependent scaling.

From the above equation, the difference in biological rates for
each temporal window was then calculated as:

. . . . __E —E
Difference in biological rates = Rye Fmsx — Rye “min

where Tmgx and Ty, are the maximum and minimum tempera-
tures (in kelvin) over each temporal window, respectively.

Statistical modeling

To test whether different ranges of temperature and biological
rates occur between regions (tropical, subtropical, and temper-
ate), we implemented a hierarchical modeling approach using
Bayesian inference with Stan (64) and the “brms” package (65)
within the R programming environment (52). For each index of
variability (range of temperature and biological rates) derived
from each temporal window (quarter-diurnal, semi-diurnal, diur-
nal, weekly, bi-weekly, monthly, and annual), we specified models
by ascribing variation among the data to region (i.e. “climate_clas-
sification”) and instrument depth (i.e. “depth_in_m”). We also
grouped variation among geographically proximate locations to
account for spatial autocorrelation by including a random inter-
cept (i.e. “spatial_blocks”) for sampling sites falling within a
174-km radius of each other (66) (see Supporting Information
Text for more details). For all temporal windows with the excep-
tion of the “Annual” ones, we used an additional level (“plot_id”)
of random effects in a nested design because the time series
that were longer than 1 year in duration were subdivided into
1-year subsamples (see Materials and methods—Temperature
range quantification). We specified a gamma error distribution
with a loglink to ensure normal residual distributions for the posi-
tively skewed, nonnegative data distributions (65, 67). All models
were fit using 2,000 iterations across four chains with the first
1,000 iterations for each chain discarded as a warm-up and did
not specify any priors, meaning that a flat prior was used by de-
fault (65). We checked convergence of models with visual inspec-
tions of trace plots, ensuring that R was <1.05 (implying model
convergence) and that there was correspondence between ob-
served and fitted values (65, 68) (see SI Appendix, Figs. S9, S11,
S13, and S15). To estimate effect sizes of the climate classifica-
tions (tropical, subtropical, and temperate), we took the average
from expected values of the posterior predictive distribution for
each region classification while holding “depth” constant at its
average values, using the “emmeans” package (69). To infer differ-
ences among regions, we contrasted these expected values be-
tween region pairs, taking the mean of these new distributions
as the marginal effect size and considering the evidence as strong
(indicated by the presence of asterisks in Figs. 2 to 5) if the 0.95
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credible intervals did notinclude zero and weak if they did include
zero (see SI Appendix, Figs. 510, S12, S14, and S16). The summary
tables of the Bayesian models are presented in SI Appendix,
Tables S1-528.

Generalized additive mixed-effects models

The trends across absolute latitude were visualized using GAMM
using the “gamm4” package (70) within the R programming envir-
onment (52). For each index of variability (range of temperature
and biological rates) derived from each temporal window
(quarter-diurnal, semi-diurnal, diurnal, weekly, bi-weekly,
monthly, and annual), we specified models by ascribing variation
among the data to the absolute latitude (decimal degrees) and
instrument depth (meters). We also grouped variation among geo-
graphically proximate locations to account for spatial autocorrel-
ation by including a random intercept (i.e. ‘“spatial_
blocks”) for sampling sites falling within a 174-km radius of each
other (66) (see Supporting Information Text for more details).
For all temporal windows with the exception of the “Annual”
ones, we used an additional level (“plot_id”) of random effects in
a nested design because the time series that were longer than
1 year in duration were subdivided into 1-year subsamples (see
Materials and methods—Temperature range quantification).
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